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Current auto and cross correlations are studied in a system of two capacitively coupled quantum dots. We are
interested in a role of Coulomb interaction in dynamical correlations, which occur outside the Coulomb
blockade region �for high bias�. After decomposition of the current correlation functions into contributions
between individual tunneling events, we can show which of them are relevant and lead to sub-/super-
Poissonian shot noise and negative/positive cross correlations. The results are differentiated for weak and
strong interdot couplings. Interesting results are for the strong-coupling case when electron transfer in one of
the channel is strongly correlated with charge drag in the second channel. We show that cross correlations are
nonmonotonic functions of bias voltage and they are in general negative �except some cases with asymmetric
tunnel resistances�. This is effect of local potential fluctuations correlated by Coulomb interaction, which
mimics the Pauli exclusion principle.

DOI: 10.1103/PhysRevB.80.035320 PACS number�s�: 72.70.�m, 73.23.Hk, 73.63.Kv

I. INTRODUCTION

Recently, McClure et al.1 and Zhang et al.2 performed
measurements of current noise autocorrelation and cross cor-
relation in a system of two capacitively coupled quantum
dots �2QDs�. It is the first measurement showing some as-
pects of current correlations in 2QD, as antibunching and
bunching of scattered electrons. The 2QD system is simplest
in which one can see a role of Coulombic interactions on
current-current correlations.

In a system of noninteracting electrons the Pauli principle
is essential in scattering process and it can lead to
antibunching.3 This effect in a multiterminal geometry, such
as in the Hanbury Brown and Twiss experiment,4 can be
manifested in negative cross correlation between scattered
electrons. The phenomena was studied theoretically5–7 and
observed in several experiments.8–10 In nanostructures anti-
bunching is responsible for reduction in autocorrelation shot
noise SII below the Poissonian value SP=2eI, where I is the
average current and e is the charge of an electron.11–15 For
sequential tunneling through a single-quantum dot �QD� a
maximal reduction in the shot noise can be to the value
1 /2�2eI.15–18

An enhancement of shot noise above the Poissonian value
was observed in a resonant tunneling diode by Iannaccone
et al.19 and in a quantum well by Kuznetsov et al.20 in the
region of negative differential resistance. The enhancement
of shot noise was interpreted as a result of change in the
density of states �DOS�, which causes more states to be
available for tunneling from cathode. Strong backscattering,
at current pinch-off �close to the Coulomb blockade border�,
can be also responsible for an enhancement of shot noise.21,22

In the Coulomb blockade region inelastic cotunneling pro-
cesses can affect transport and lead to super-Poissonian shot
noise.23,24

Recently, Wu and Yip25 and Rychkov and Büttiker26 ap-
plied a phenomenological Langevin formalism in circuit
modeling to calculations of current cross correlations in a
three-terminal system. An interesting result is that current
cross correlations are always positive in a macroscopic clas-

sical three-terminal with a fluctuating current in an input
electrode. It is in contrast to a microscopic picture of scat-
tered electrons, which in general shows antibunching with
negative cross correlations.5–7 However, there is an exception
when inelastic scattering occurs. Texier and Büttiker6 consid-
ered a multiterminal system with inelastic scattering in an
additional electrode, in which the current was kept equal to
zero and which caused voltage fluctuations. They showed
that inelastic scattering can lead to positive cross correla-
tions, whereas for quasielastic scattering correlations remain
always negative. Just recently Oberholzer et al.27 confirmed
experimentally these predictions in a device with fractional
quantum Hall-effect edge states in which interactions be-
tween current carrying states and a fluctuating voltage were
controlled by an external gate voltage. If scattered electrons
are entangled, the situation can be different; one can see
bunching or antibunching. Burkard et al.28 showed that for
singlets the autocorrelation function is twice as large as for
independent electrons and is reduced to zero for triplets.

Current correlations in the system of two capacitively
coupled quantum dots were studied theoretically in several
papers.29–33 Our studies on a ferromagnetic single electron
transistor �fSET� �Refs. 21 and 34� are closely related be-
cause there are two channels for electrons with opposite
spins �= ↑ ,↓ and Coulomb interactions are included as well.
We have shown a dynamical Coulomb blockade effect be-
tween the both channels, which is responsible for a reduction
in current and leads to the super-Poissonian shot noise. Posi-
tive cross correlations were predicted by Cottet et al.35–37 on
a similar system with three terminals and three QDs. They
also analyzed time evolution of tunneling events and pre-
sented bunching. Dynamical Coulomb blockade and bunch-
ing were studied by Gustavsson et al.38,39 in time-resolved
measurements of electron transport through a multilevel QD.

In this paper we want to study a microscopic nature of
dynamical current correlations, especially a role of Coulomb
interactions, in the 2QD system. Some problems were men-
tioned earlier,29,34 for example, a role of charge and polariza-
tion fluctuations and their contribution to the current corre-
lation function. We expect that for a symmetric case these
contributions may compensate each other, but they can be
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pronounced in an asymmetric case. Two different situations
will be studied, with weak and strong interdot couplings. We
will show that both the cases have different charging dia-
grams in the space of biases applied to the both channels. For
the strong-coupling electron transfer in one of the channel
should be strongly correlated with charge drag in the second
channel. In order to see correlations between individual tun-
neling events we decompose correlation functions and ana-
lyze contributions leading to the sub-/super-Poissonian noise
as well to positive cross correlations. The experiments1,2

were performed for small biases and near degeneracy lines
separating different Coulomb blockade regions. The present
studies are more general. We analyze the Schottky contribu-
tion, which can be large close to the Coulomb blockade bor-
der due to backward scattering. However, our main interest
focus on dynamical correlations for electronic transport out-
side the Coulomb blockade region when the bias window is
large.

The paper is organized as follows. In Sec. II we describe
the 2QD model and derive general formulas for charging
energy, current, and correlation functions. Section III pre-
sents charging diagrams and allowed tunneling processes in
the space of bias voltages. The charging diagrams are back-
ground for further analysis of correlations between indi-
vidual tunneling events presented in Sec. IV. We show there
differences of auto and cross correlations for weak and
strong interdot couplings. The correlation functions are non-
monotonous with bias voltages, which means that there are
several competing correlation processes. Our decomposition
approach shows which contributions are relevant. For ex-
ample, current cross correlations are in general negative �ex-
cept special situations with asymmetric resistances�, but this
antibunching effect is due to potential fluctuations �it is not
due to the Pauli exclusion principle as in many
nanostructures11–15�. Main results of the paper are summa-
rized in Sec. V.

II. DESCRIPTION OF THE MODEL AND GENERAL
DERIVATION OF TRANSPORT QUANTITIES

A. Model

We consider a system that consists of two large capaci-
tively coupled quantum dots �top and bottom: �= t ,b� with a
continuous electronic density of states. Each QD is con-
nected with the left ��=L� and the right ��=R� electrodes
through the tunnel junctions, which are characterized by the
tunnel resistances R�� and capacitances C�� �see Fig. 1�. The
strength of the interdot Coulomb interaction is modeled by
the capacitance Cint. To this four-terminal system, the bias
voltages VtR and VbR are applied to the right electrodes, while
both the left electrodes are grounded �asymmetric bias�. Usu-
ally additional gates are applied to the QDs, which can
change their electrochemical potentials and number of elec-
trons. In order to simplify the analysis these gates can be
omitted. The corresponding resistances of the tunnel junc-
tions are assumed to be much larger than quantum resistance
RQ=h /2e2 so the electronic transport is dominated by inco-
herent, sequential tunneling processes.40 Since our research
is focused on dynamical processes in high-voltage regime

�outside the Coulomb blockade�, higher order processes
�e.g., cotunneling� are neglected. Cotunneling can be rel-
evant in the Coulomb blockade region, for tunneling currents
as well as super-Poissonian shot noise.30–33 It is also assumed
that the temperature T is low, which means that charging
energies of the individual dots E�

ch and an energy of the in-
terdot Coulomb interaction Eint

ch are much larger than a ther-
mal energy kBT, i.e., E�

ch and Eint
ch �kBT.

B. Charging energy

The voltage drops on the tunnel junctions as well as be-
tween both dots �i.e., on the capacitance Cint� can be calcu-
lated from Kirchhoff’s laws as follows:

VtL
drop =

Et
ch

e
nt +

Eint
ch

e
nb +

CtRCb

C2 VtR +
CbRCint

C2 VbR, �1�

VtR
drop = VtR − VtL

drop, �2�

VbL
drop =

Eint
ch

e
nt +

Eb
ch

e
nb +

CtRCint

C2 VtR +
CtCbR

C2 VbR, �3�

VbR
drop = VbR − VbL

drop, �4�

Vint
drop =

e�CbL + CbR�
C2 nt −

e�CtL + CtR�
C2 nb +

�CbL + CbR�CtR

C2 VtR

−
�CtL + CtR�CbR

C2 VbR, �5�

where an electron charge e�0, Ct=CtL+CtR+Cint, Cb=CbL
+CbR+Cint, and C2=CtCb−Cint

2 . The charging energies Et
ch

=e2Cb /C2, Eb
ch=e2Ct /C2, and Eint

ch =e2Cint /C2. The interdot
energy Eint

ch describes the change in the energy of one dot
when an electron is added to the other dot.

Transfer rate ���
s through the junction �� can be found

from changes in the free energy of the whole system when an
electron is added �s=+� �or extracted: s=−� to �from� one of
the quantum dots. The free energy consists of the potential
energies of the electrodes and the electrostatic energies of the

0 VtR

CtL,RtL CtR,RtR

nt

0 VbR

CbL,RbL CbR,RbR

nb

Cint

FIG. 1. �Color online� Schematic view of two capacitively
coupled quantum dots. Each dot � ��= t ,b �top and bottom�� is
connected with the electrodes ��=L ,R �left and right��. The tunnel
junctions are characterized by the capacitances C�� and the resis-
tances R��. The strength of the dot-dot interaction is modeled by the
capacitance Cint. The bias voltages VtR and VbR are applied to the
right electrodes.
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charged capacitors and for the system under consideration
has a form,

F�nt,nb,ntL,ntR,nbL,nbR� = − QtRelVtR − QbRelVbR

+ �CtL�VtL
drop�2 + CtR�VtR

drop�2

+ CbL�VbL
drop�2 + CbR�VbR

drop�2

+ Cint�Vint
drop�2�/2, �6�

where QtRel=QtR+entR and QbRel=QbR+enbR are charges on
the top and bottom right electrodes, respectively. ntR �nbR� is
a number of electrons transferred from the right electrode to
the top �bottom� QD and charges on the capacitors C�� are
Q��=C��V��

drop ��= t , b ; �=L ,R�. The changes in the free
energy due to electron tunneling through the junction �� can
be written as differences between the free energies of the
initial Fi and the final Ff states,

�FtL
s �nt,nb� = Fi�nt,nb,ntL,nbL,ntR,nbR�

− Ff�nt + s1,nb,ntL + s1,nbL,ntR,nbR� , �7�

�FbL
s �nt,nb� = Fi�nt,nb,ntL,nbL,ntR,nbR�

− Ff�nt,nb + s1,ntL,nbL + s1,ntR,nbR� , �8�

�FtR
s �nt,nb� = Fi�nt,nb,ntL,nbL,ntR,nbR�

− Ff�nt + s1,nb,ntL,nbL,ntR + s1,nbR� , �9�

�FbR
s �nt,nb� = Fi�nt,nb,ntL,nbL,ntR,nbR�

− Ff�nt,nb + s1,ntL,nbL,ntR,nbR + s1� ,

�10�

where s=	 for an added or extracted electron. An electron
can be transferred through the junction �� when the corre-
sponding free-energy difference �F��

s �nt ,nb�
0.

C. Current and correlation functions

One can calculate the tunneling rates through the junc-
tions using the method developed for a single QD with a
continuous electronic DOS �see, for example, Ref. 40�. For
our system, one can obtain the following tunneling rate for
transfer of an electron through the junction ��:

���
s �nt,nb� =

1

e2R��

�F��
s �nt,nb�

1 − exp�− �F��
s �nt,nb�/kBT�

, �11�

where the tunneling resistance R��=� / �4�e2�M���2D�D��
and D� is DOS in QD, while D� is DOS in the electrode. It
is assumed that the transfer-matrix element M�� as well as
DOS are constant around the Fermi energy, and the resis-
tances R�� are parameters of the model.

In the stationary state the average currents flowing
through the junction �� can be found from the formula

I�� = �L� − R���I��
+ − I��

− � , �12�

where L� and R� are the Kronecker’s deltas, I��
s

=e�nt,nb
���

s �nt ,nb�p�nt ,nb� is the current flowing to/from the

QD �s=	�, and the probability p�nt ,nb� describes the system
in the steady state, which contains nt and nb excess electrons
on the top and the bottom QD, respectively. The probability
p�nt ,nb� can be found from the master equation

dp�nt,nb;t�
dt

= �
�,s

��t�
s �nt − s1,nb�p�nt − s1,nb;t�

+ �b�
s �nt,nb − s1�p�nt,nb − s1;t��

− p�nt,nb;t��
�,s

��t�
s �nt,nb� + �b�

s �nt,nb�� ,

�13�

with the left-hand side equal to zero.
To analyze fluctuations in the system we extend the

generation-recombination approach41 for multielectron chan-
nels by a generalization of the method developed for spinless
electrons in a SET.18 In calculation of the current-current
correlation functions, we also include the self-correlation
terms as well.18 According to this procedure the auto- and
cross-current-current correlation functions are

S��,������� = ������S��
Sch + S��,����

c ��� , �14�

where the Schottky term �the frequency independent part for
�→�� is given by

S��
Sch = 2e�I��

+ + I��
− � , �15�

and the frequency-dependent part

S��,����
c ��� = 2e2�L� − R��

��L�� − R��� �
nt�,nb�;nt,nb

D��,����
nt�nb�,ntnb��� . �16�

Here, we denoted

D��,����
nt�nb�,ntnb��� = �

s,s�

ss�������
s� �nt�,nb��Gnt�nb�,ntnb

���

��t����
s �nt − s1,nb�p�nt − s1,nb�

+ b����
s �nt,nb − s1�p�nt,nb − s1��

+ ���
s �nt�,nb��Gnt�nb�,ntnb

�− ��

��t�������
s� �nt − s�1,nb�p�nt − s�1,nb�

+ b�������
s� �nt,nb − s�1�p�nt,nb − s�1���

�17�

as contributions to the dynamical part of the correlation func-
tion for various tunneling events in the space of the charge
states �nt ,nb�. Later we will analyze the components

D��,����
nt�nb�,ntnb in order to show correlations between tunneling

processes. The elements of the Green’s function

Gnt�nb�,ntnb
���= �i�1̂−M̂�nt�nb�,ntnb

−1 and the matrix M̂ is con-

structed from the right-hand side of master Eq. �13�. Here,
we use the symmetrized formulas �Eqs. �16� and �17�� for the
current shot noise. Recently, an asymmetric formula was
used to study frequency-dependent asymmetric features.42
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Our analysis is confined to the zero-frequency limit, and
therefore the symmetrized approach is justified.

We can write also other correlation function for any quan-
tity X and Y in the space of states �nt ,nb�,

SXY��� = 4 �
nt�,nb�;nt,nb

X�nt�,nb��Gnt�nb�,ntnb
���Y�nt,nb�p�nt,nb� .

�18�

For example, in further studies we will calculate the voltage-
voltage correlation function SVt,Vt

, where Vt= �Et
chnt

+Eint
ch nb� /e and it is a potential difference at the top QD when

an additional charge is added to the system. The function
SVt,Vt

describes potential and charge fluctuations during cur-
rent flow.

III. CHARGING DIAGRAMS

Before solving master Eq. �13�, we should first to deter-
mine �from Eq. �11�� the tunneling rates ���

s �nt ,nb� in the
two-dimensional �2D� space of charge states �nt ,nb� for
given bias voltages VtR and VbR. If �F��

s �nt ,nb��0 then
���

s �nt ,nb�	exp�−��F��
s �nt ,nb�� /kBT� / �e2R��� and the tun-

neling process is exponentially suppressed in the low-
temperature limit �T→0�. Otherwise, when �F��

s �nt ,nb�
0,
the tunneling process can be relevant for transport. In prac-
tice one can restrict considerations to the �nt ,nb� space
around the ground state �0,0� with a small number of avail-
able states and tunneling processes relevant for transport. Of
course, the space of available states depends on the bias volt-
age V�� and increases with an increase in V��. If one wants
to consider temperature effects, the space �nt ,nb� should be
enlarged and neighboring charge states with thermally acti-
vated processes should be taken into account.

Here, we perform an analysis of the available states and
relevant tunneling processes at T=0 for a weak and strong
interdot coupling cases. First, the weak-coupling case is con-
sidered for which one can expect that transport is similar to
the case of two independent QDs and one can easily under-
stand modifications introduced by the interdot coupling. We
consider the system with symmetrical couplings to the elec-
trodes CtL=CtR=CbL=CbR in which the charging energy of
both QDs is Et

ch=Eb
ch. This case is simpler to present. It is no

problem to generalize the analysis for different couplings
C��. The available charge states �nt ,nb� and tunneling pro-
cesses participating in currents are presented in Fig. 2 in the
�VtR ,VbR� space. The diagram was obtained for Cint=C��

=1 aF. The rhombic area in the middle of Fig. 2�a� corre-
sponds to the Coulomb blockade �CB� region, where all
���

− �0,0� are suppressed and electrons cannot leave the state
�0,0�. With increasing voltage VtR �or VbR� some tunneling
processes become allowed because the corresponding free-
energy differences become positive, �F��

s �0,0�
0. New
charge states �nt ,nb� become available and the currents begin
to flow. Threshold voltages V��

th can be determined from the
equation �F��

s �nt ,nb�=0 and they are presented in Fig. 2�a�
as �green� solid lines. The threshold lines divide the
�VtR ,VbR� space into regions �a , . . . ,n� with particular al-
lowed tunneling processes ����

s �nt ,nb�� presented below in

Fig. 2�b�. Let us analyze as an example transport for the case
of small VbR	0. With an increase in VtR one can reach above
a threshold voltage Vth region b, where �tR

− �0,0� becomes
relevant and electron can leave the top QD through the right
tunnel junction. In this case only two charge states �0,0� and

VtR [mV]

-100 -80 -60 -40 -20 0 20 40 60 80 100

V
b

R
[m

V
]

-100

-80

-60

-40

-20

0

20

40

60

80

100

a b

e

h i

l

g

d

n

k

c

m

j

f

c

d
fg

l m

a

b

e

h

i

j

k n

COULOMB
BLOCKADE

b)

a)

VtR > VbR
VtR < VbR

(-1,1) (0,1)

(-1,0) (0,0)

(0,0) (1,0)

(0,-1) (1,-1)

FIG. 2. �Color online� �a� The diagram of the available charge
states and tunneling processes contributing to transport in the space
of bias voltages �VtR ,VbR� for the coupling Cint=C��=1 aF. Solid
�green� lines denote threshold voltages V��

th , which set regions
�a , . . . ,n� with particular allowed tunneling processes ����

s �nt ,nb��.
�b� Diagrammatic representation of the tunneling processes
����

s �nt ,nb�� between the charge states �nt ,nb� allowed in transport
for various regions �a , . . . ,n�. Tunneling processes between charge
states are shown as �red� solid arrows for tunneling through the left
junction and �blue� dash arrows denote tunneling through the right
junction; horizontal arrows correspond to tunneling processes
through the top QD, whereas vertical arrows are for tunneling
through the bottom QD, respectively. For example, the diagram “b”
presents allowed tunneling processes between states �0,0� and
�−1,0� through the left and the right junctions in the top QD.
The solid �red� arrow between states �−1,0� and �0,0� denotes
�tL

+ �−1,0�, while the dash �blue� line between these states corre-
sponds to �tR

− �0,0�. The other processes in regions �b , . . . ,n� can be
described analogously. For larger voltages �VtR� and �VbR� �i.e., out-
side the regions enclosed by the green lines� additional new charge
states appear, e.g., �2,0�, �−2,1�, etc.
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�−1,0� participate in transport. In this region one can expect
similar current and shot-noise characteristics as those for in-
dependent QD. The tunneling current is flowing only through
the top QD while the bottom QD is still in the Coulomb
blockade regime. On the other hand, in region f only two
charge states �0,0� and �0,1� participate in transport so the
tunneling current is flowing through the bottom QD while
the top QD is in the CB regime. In region a the voltage VbR
is higher, �bL

− �−1,0� becomes relevant �tunneling through the
bottom left junction is allowed�, and four charge states �0,0�,
�−1,0�, �−1,1�, and �0,1� participate in transport. On the
left-hand side of Fig. 2�a� we have VtR�VbR and the situa-
tion is symmetric to that one on the right-hand side. For
higher voltages, outside regions �a , . . . ,n�, additional states
�nt ,nb� are available for the tunneling events.

The charging diagram and the relevant tunneling pro-
cesses for the strong intercoupling case �Cint=3 aF� are pre-
sented in Fig. 3. We have found that the ground state is
always �0,0� in the CB region, with a global minimum of the
system. However, a set of local minima appears at �n ,−n�
�with n= 	1, 	2, . . .�. These polarized states �n ,−n� can be
only reached in CB through thermally activated neighboring
states �n ,−n	1� and �n	1,−n�. Because the corresponding

free energy increases with the polarization P
nt−nb, thus
these states are less stable for large P. The system evolves
between the local minima in order to reach the ground state,
and transition times are shorter between the metastable states
with a large polarization P. One can expect that the polarized
states and fluctuations of polarization play a relevant role in
currents and shot noise. For the case Cint=3 aF the local
minima appear for the polarized states �1,−1� and �−1,1�,
and all transfer rates ���

s �1,−1� and ���
s �−1,1� are exponen-

tially small in the CB region. Comparing the diagrams in
Figs. 2�a� and 3�a� one can see that charged regions shrink
with Cint. The CB region is smaller as well as charged re-
gions �a , . . . ,n� above Vth. For example, in region b �at VtR

Vth and VbR	0� all four states �0,0�, �−1,0�, �−1,1�, and
�0,1� participate in transport for Cint=3 aF, whereas in Fig. 2
only two states �0,0� and �−1,0� are available. For the strong
interdot coupling the bias voltage VtR opens only the transfer
�0,0�→ �−1,0� since all other tunneling processes are al-
lowed. One sees a close loop of electron transfers between
the charge states �0,0�→ �−1,0�→ �−1,1�→ �0,1�→ �0,0�.

IV. ANALYSIS OF CURRENTS AND SHOT NOISE

A. Weak interdot coupling

In this section we want to study dynamical current-current
correlations. Therefore, we analyze contributions of different
tunneling processes ���

s �nt ,nb� in the �nt ,nb� charge state
space to currents I�� and shot noises S��,����. Their voltage
characteristics depend on the charging energies, on
�F��

s �nt ,nb�, as well as on the tunnel resistances R��. Figure
4 presents results of numerical calculations for the weak in-
terdot coupling Cint=1 aF. We plot maps in the �VtR ,VbR�
space for the current ItL through the top QD, the Fano factor
FtL=StL,tL��=0� /2eItL �for the autocorrelation current-
current function in the top QD at the frequency �=0�, the
cross-correlation function StL,bL=StL,bL��=0� between the
currents in the top and the bottom QD, and the Fano factor
FbL=SbL,bL��=0� /2eIbL at the bottom QD. The current IbL is
not shown because its characteristic is very similar to ItL �one
can rotate its map by 90°�. The tunnel resistances are as-
sumed to be symmetric for the top QD �RtL=RtR=1 M��
and for the bottom QD �RbL=RbR=50 M��. We have ana-
lyzed the characteristics for other resistances �also for RtL
=RtR=RbL=RbR=1 M��, but the super-Poissonian shot
noise is more pronounced in the case presented. Because
temperature only smears the characteristics close to the
threshold voltages Vth, it is irrelevant for our studies, and we
take T=0 in the calculations. We do not analyze the CB
region, where other �cotunneling� processes can be relevant
and where they can dominate over contributions of sequen-
tial tunneling to currents.

Let us analyze the Fano factor FtL for the top QD, which
is presented in Fig. 4�b�. In region b �for VtR
Vth and VbR
	0� transport through the top QD is not disturbed by the
bottom QD, and the shot noise is in the sub-Poissonian re-
gime �with FtL�1� as expected. For larger positive values of
VbR �in region a, c, or d� the Fano factor FtL
1 and de-
creases below the unity with an increase in VtR. In this case
the charge states �0,0�, �−1,0�, �−1,1�, and �0,1� participate
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FIG. 3. �Color online� �a� The diagram of the available charge
states and allowed tunneling processes contributing to transport in
the space of bias voltages �VtR ,VbR� for a strong-coupling case
Cint=3 aF
CtL=CtR=CbL=CbR=1 aF. �b� The diagrammatic rep-
resentation of the tunneling processes ����

s �nt ,nb�� in the charge
state space in various regions �a , . . . ,n� �notation is the same as in
Fig. 2�.
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in transport. Charge fluctuations in the bottom QD can be
large and can lead to the dynamical Coulomb blockade
�DCB� effect.29,34–37 The effect manifests itself in an en-
hancement of the shot noise to the super-Poissonian regime
�with FtL
1�. It is seen in the frequency-dependent part of
the autocorrelation function, StL,tL

c ��� �see Eq. �16��, which at
�=0 is a sum of all contributions of current fluctuations with
various relaxation times.29,34 This function is then positive
since many tunneling processes show bunching of electrons
and their contributions are positive. Figure 4�b� shows that
the super-Poissonian shot noise occurs also in regions e and
g.

In order to understand a role of various tunneling pro-
cesses in the shot noise FtL we analyze all components

DtL,tL
nt�nb�,ntnb, which contribute to the dynamical part of the func-

tion StL,tL
c �see Eqs. �16� and �17��. The results are presented

in Fig. 5�a�, which is a cross section through regions a, b, c,
and d in Fig. 4�b�. The autocorrelation function DtL,tL

−10,−10 de-
scribes correlations of tunneling processes between the
charge states �−1,0�→ �0,0�. In region b the function is
negative, and therefore the shot noise is sub-Poissonian. But
the function increases and becomes positive in regions a and
c. A more pronounced increase is seen for the component
DtL,tL

−11,−11. In contrast, the cross-correlation function DtL,tL
−10,−11 is

negative in all the regions. It means that the tunneling pro-
cesses �−1,0�→ �0,0� and �−1,1�→ �0,1� are antibunched.
This contribution, however, does not compensate DtL,tL

−10,−10

and DtL,tL
−11,−11, and therefore FtL
1 in regions a and c. Our

previous studies29,34 showed that the super-Poissonian shot
noise is due to activation of charge fluctuations in the sys-

FIG. 4. �Color online� The current and the shot-noise maps in the �VtR ,VbR� space for the weak interdot coupling Cint=1 aF. �a� The
current ItL �nA� flowing through the top QD. �b� The Fano factor FtL for the left junction in the top QD. �c� The cross-correlation function
StL,bL�0��10−28 A2 /Hz� for the currents in the top and the bottom QD. �d� The Fano factor FbL in the left bottom junction. The results were
performed for RtL=RtR=1 M�, RbL=RbR=50 M�, and T=0 K. The other parameters are the same as in Fig. 2.
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tem. For the present model we have the same situation. Fig-
ure 5�b� presents the plots of voltage correlation functions
SVt,Vt

and SVb,Vb
in the top and the bottom QD. A large en-

hancement of voltage and charge fluctuations in regions a, c,
and d in the bottom QD is seen �see the blue dash curve�.
Moreover, these plots are very similar to the autocorrelation
components DtL,tL

ntnb,ntnb; even small kinks at VbR=−36 mV are
similar in both the figures. Voltage fluctuations in the bottom
QD are very strong, 2 orders of magnitude larger than those
in the top QD.

The cross-correlation function StL,bL is presented in Fig.
4�c�. We do not normalize the cross-correlation functions be-

cause the function is a sum of two contributions proportional
to some components of ItL and IbL, and therefore there is not
a good normalization factor43 �neither ItL nor IbL and �ItLIbL
can be used35,44�. One sees in Fig. 4�c� that the function StL,bL
is negative in the right-upper and the left-lower quarter of the
map, when the currents ItL and IbL have the same direction.
This dependence is typical for cross correlation in scattering
of fermions, which exhibit antibunching.3,11–15,43 However,
in our situation electronic transfer is separated in the top and
in the bottom parts of the device, so antibunching is not
fermionic nature. We show later that correlation of both the
electronic channels is due to Coulombic interaction and po-
tential fluctuations.

In contrast to FtL, the current noise FbL in the bottom QD
is generally the sub-Poissonian type, except with a narrow
stripe around VbR=0 for high VtR �see Fig. 4�d��. The differ-
ence between the maps in Figs. 4�b� and 4�d� results from the
DCB effect. An electron traversing the bottom channel
spends a long time at the bottom QD, and the charge fluc-
tuations at the top QD are relatively fast. Therefore, transport
in the bottom channels depends on an average potential in
the top QD and the shot noise FbL is very little sensitive to
individual tunneling events in the top channel of our device.

B. Strong interdot coupling

Maps in Fig. 6 show transport characteristics ItL, FtL,
StL,bL, and FbL in the bias space �VtR ,VbR� for the strong
interdot coupling. In this case the maps are different than for
the weak coupling in Fig. 4 because the charging diagram is
different �compare Figs. 2 and 3�. In regions �a , . . . ,g� all
four charge states �0,0�, �−1,0�, �−1,1�, and �0,1� contribute
to transport; whereas states �0,0�, �1,0�, �1,−1�, and �0,−1�
are active in regions �h , . . . ,n�. Tunneling processes and their
contributions to transport are different than in the case of the
weak coupling. Let us analyze the Fano factor FtL presented
in Fig. 6�b�. In region b �for VtR
Vth and VbR	0� the shot
noise is super-Poissonian, but one sees also a dark area �with
FtL�1� inside this region. It means that there are various
competing tunneling processes and their role changes with
the bias voltage. An interesting situation is in region f �for
VbR
Vth and small VtR�. In the middle FtL shows a peak,
while in Fig. 4�b� the shot noise decreased below the unity.
One sees the dark areas in Fig. 6�b� close to the borders with
regions e and g.

We have analyzed several cross sections of the maps in
Fig. 6. One of them is in Fig. 7, which presents FtL in region
b at VbR=0. We also plotted the dynamical part of the shot

noise, FtL
c =StL,tL

c /2eItL, and its components DtL,tL
nt�nb�,ntnb /2eItL.

For small voltages VbR the autocorrelation components
DtL,tL

−10,−10 and DtL,tL
−11,−11 dominate over the cross-correlation one

DtL,tL
−10,−11, so StL,tL

c 
0 and the corresponding FtL is super-
Poissonian. It is seen that the function DtL,tL

−10,−11 always de-
creases with VtR. The autocorrelation components have dif-
ferent dependencies, and these two components compete
with each other. The function DtL,tL

−10,−10 increases, whereas
DtL,tL

−11,−11 decreases. For small bias voltage tunneling pro-
cesses �−1,1�→ �0,1� dominates in the super-Poissonian
shot noise, while autocorrelations �−1,0�→ �0,0� become
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FIG. 5. �Color online� �a� Plots of the Fano factor FtL �black

solid curve� and all its components DtL,tL
nt�nb�,ntnb contributing to the

dynamical part of the shot noise StL,tL
c for VtR=60 mV �the cross

section of the map in Fig. 4�b� through regions a, b, c, and d�. The
red dotted curve is for DtL,tL

−10,−10, which corresponds for the autocor-
relation function of the tunneling processes �−1,0�→ �0,0�. Simi-
larly, the blue long dash curve is for DtL,tL

−11,−11. The pink dash-dot-dot
curve corresponds to DtL,tL

−10,−11, which describes the cross correlation
of the tunneling events �−1,0�→ �0,0� and �−1,1�→ �0,1�. All the
curves are normalized as the Fano factor �i.e., they are divided by
2eItL�. �b� Plots of the voltage-voltage correlation function SVt,Vt
�red solid curve� and SVb,Vb

�blue short dash curve� describing po-
tential and charge fluctuations at the top and the bottom QD, respec-
tively. Note that the right-hand axis corresponds to SVb,Vb

and po-
tential fluctuations at the bottom QD are 2 orders of magnitude
larger than those in the top QD.
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dominating for large VtR. In the intermediate voltage range
FtL�1 because the cross-correlation component plays a
dominating role.

In Fig. 8 we present FtL and its relevant components at
VbR=−50 mV for a cross section through regions f , e, and d.
The strong enhancement of the FtL in region f at small VtR is
due to the Schottky term StL

Sch. This situation is in contrast to
that one for VbR=0 presented in Fig. 7, where StL

Sch /2eItL=1
in whole region b �with exception of a small region close to
the threshold voltages, where strong thermal current fluctua-
tions occur�. From the plots in Fig. 8 one sees that the con-
tribution StL

Sch to the total Fano factor decreases with increas-
ing voltage VtR, while a role of the dynamical part StL

c grows.

This leads to the reduction in the Fano factor below Poisso-
nian value for voltages 14.5�VtR�24 mV �close to the bor-
der between regions f and e�. For higher voltages StL,tL

c be-
come positive and the Fano factor is super-Poissonian. One
sees from Fig. 8 that an enhancement of the Ftl

c in region e is
caused by autocorrelation processes DtL,tL

−10,−10 �red dot curve�.
The border between regions f and e is a transition line be-
tween the sub- and the super-Poissonian shot noise, where
the tunneling process �tR

+ �−1,0� disappears while the process
�tR

− �0,0� becomes activated.
The cross correlation StL,bR �see Fig. 6�c�� is similar to

that one in the weak-coupling case, which shows antibunch-
ing. However, this antibunching process is not of fermionic

FIG. 6. �Color online� The current and the shot-noise maps for the strong interdot coupling Cint=3 aF. �a� The current ItL �nA� flowing
through the top QD. �b� The Fano factor FtL for the left junction in the top QD. �c� The cross-correlation function StL,bL�0��10−28 A2 /Hz�
for the currents in the top and the bottom QD. �d� The Fano factor FbL in the left bottom junction. The results were performed for RtL

=RtR=1 M�, RbL=RbR=50 M�, and T=0 K. The other parameters are the same as in Fig. 3.
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origin; exchange of electrons is impossible between the both
QDs. In our system strong Coulombic repulsion occurs be-
tween charges transferred through the top and the bottom
parts of the device. This process mimics the Pauli exclusion
principle, and therefore electronic transfers through the top
and the bottom QD should be anticorrelated and the function
StL,bR�0. We make a cross section through regions a, b, and
c at VtR=50 mV for the current IbL and StL,bR �see Fig. 9�a��.
We expected that the cross-correlation function StL,bR is pro-
portional to the current −IbL, at least in region b for small
bias. However, the plot is different—its shows a plateau
around VbR	0 and a sharp increase, which is proportional to
−IbL. It is clear that the current IbL and the cross-correlation
function StL,bR may change their dependencies in regions a
and c because new tunneling processes are activated. In or-
der to understand the dependence of StL,bR in region b, we

plot its components DtL,bL
nt�nb�,ntnb in Fig. 9�b�. Notice that at

VbR=0 all the components are nonzero, but they compensate
each other and the sum is StL,bR=0. It is clear that DtL,bL

−10,−10

+DtL,bL
−10,01=0 at VbR=0 because these components describe

correlations between the tunneling event �−1,0�→ �0,0�
through the left top junction and the forward and the back-
ward tunneling events through the left bottom junction �be-
tween charge states �−1,0�→ �−1,1� and �0,1�→ �0,0�, re-
spectively�. Similarly, one has DtL,bL

−11,−10+DtL,bL
−11,01=0.

However, one can see that at VbR=−3.55 mV the compo-
nents DtL,bL

−10,−10=0 and DtL,bL
−10,01=0, while DtL,bL

−11,−10=0 and
DtL,bL

−11,01=0 at VbR=−3.73 mV. This compensation is due to
advanced and retarded correlations, which occur for any

component DtL,bL
nt�nb�,ntnb �see Eq. �17� and terms corresponding

to � and −��.42 Both the contributions, advanced and re-
tarded, compensate each other either at VbR=−3.55 or
−3.73 mV, respectively. This effect is also responsible for
the plateau seen in StL,bR. Outside the plateau region the
dominating components are DtL,bL

−10,01 and DtL,bL
−11,−10 �for negative

and positive VbR, respectively� �see the pink long dash and
the blue short dash curves in the bottom part of Fig. 9�.

Let us come back to the maps in Fig. 6 and analyze the
Fano factor FbL in the bottom QD shown in Fig. 6�d�. It is
the sub-Poissonian type in the most regions, but the function
has an interesting feature in regions b and i, where FbL
1.
The shot noise is due to charge fluctuations in the top QD.
When an electron leaves the top QD, �0,0�→ �−1,0�, the
system becomes unstable; therefore, an electron is attracted
to the bottom QD, �−1,0�→ �−1,1�, through the left or the
right tunnel junction. The system is in the metastable state
�−1,1�. The next tunneling event in the top QD, �−1,1�
→ �0,1�, leads to pushing out the electron from the bottom
QD, �0,1�→ �0,0�. This is a pumping effect—a charge in-
jected into �or ejected from� the top QD leads to ejection
�injection� of a charge at the bottom QD. One can expect that
the shot noise SbL,bL should be proportional to the tunneling
current ItL. It is easy to prove it, calculating these quantities
in region b for VbR=0. The results are presented in Fig. 10.
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The main contribution to the shot noise �Eq. �14�� is due to
the Schottky term �Eq. �15��, which is now SbL

Sch=4eIbL
+ . Since

for VbR=0 the currents flowing into and from the bottom QD
are equal IbL

+ = IbL
− ; the total current IbL= IbL

+ − IbL
− =0. There-

fore, Fig. 10 presents the autocorrelation function SbL,bL; in-
stead the Fano factor FbL=SbL,bL /2eIbL. In this case one can
obtain analytical formula,

IbL
+ = e

�tR
− �0,0��tL

+ �− 1,1��b
+�− 1,0��b

−�0,1�
2w

, �19�

where

w = �tR
− �0,0���b

−�0,1���b
+�− 1,0� + �tL

+ �− 1,1�� + �b
+�− 1,0�

���tL
+ �− 1,1� + �tR

− �0,1��� + �b
−�0,1���b

+�− 1,0�

+ �tL
+ �− 1,0���tL

+ �− 1,1� . �20�

Here, we used RbL=RbR and denoted �b
+�−1,0�

=2�bL
+ �−1,0� and �b

−�0,1�=2�bL
− �0,1�. The autocorrelation

function is derived from Eq. �14�,

SbL,bL�0� = e2�tR
− �0,0��tL

+ �− 1,1��b
+�− 1,0��b

−�0,1�
w

.

�21�

In this case one can see that the Schottky term SbL
Sch

=2SbL,bL�0�. The current through the top QD is

ItL = e
�tR

− �0,0��tL
+ �− 1,1���tR

− �0,1��b
+�− 1,0� + �b

−�0,1���tL
+ �− 1,0� + �b

+�− 1,0���
w

. �22�

The tunneling process between the states �0,0�→ �−1,0�, de- scribed by �tR
− �0,0�, is relevant for ItL as well as SbL,bL.
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�−1,0�→ �0,0� and �−1,0�→ �−1,1�; the green dash-dot curve cor-
responds to DtL,bL

−11,01, which describes correlations between �−1,1�
→ �0,1� and �0,1�→ �0,0�; and the blue short dash curve corre-
sponds to DtL,bL

−11,−10, which describes correlations between �−1,1�
→ �0,1� and �−1,0�→ �−1,1�.
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FIG. 10. �Color online� The function SbL,bL�0� �solid black
curve� plotted vs the bias VtR for VbR=0 and Cint=3. It is a cross
section through region b of the map in Fig. 6�d�. We also plotted its
Schottky component SbL

Sch �red dash-dot curve� and the frequency-
dependent part SbL,bL

c �0� �blue short dash curve�. The plot shows
that the shot noise in the bottom QD is induced by the current in the
top QD ItL �pink long dash curve�.
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Therefore, the shot noise in the bottom QD �see Fig. 10� is
proportional to the current in the top QD.

C. Asymmetric resistances

So far we have analyzed the system in the case when each
QD is symmetrically coupled to the left and the right elec-
trodes. In this section we will show how asymmetrical cou-
pling to the leads can influence noises in the system. Let us
analyze first the weak-coupling case �Cint=1 aF�. The maps
for the Fano factor FtL and the cross-correlation function

StL,bL are presented in Fig. 11. The value of the Fano factor
FtL is slightly smaller than in the symmetrical case �compare
with Fig. 4�b��. One can see that now the sub-Poissonian
shot noise dominates in region a. The factor FtL has non-
monotonic behavior, which is well seen in regions a, c, and
d. Its value is super-Poissonian in the area very close to the
CB and close to region e; next it drops below the unity with
an increase of VtR and grows to the super-Poissonian values
for higher voltages. The super-Poissonian shot noise occurs
also in regions e and g. We have found that, as in the sym-
metrical case, for an enhancement of FtL the autocorrelation

FIG. 12. �Color online� Maps �a� for the Fano factor FtL and �b� for the cross correlation StL,bL in the strong interdot case Cint=3 aF and
plotted for RtL=RtR=1 M�, RbL=10 M�, and RbR=100 M�. The other parameters are the same as in Fig. 3.

FIG. 11. �Color online� Maps �a� for the Fano factor FtL and �b� for the cross correlation StL,bL at the weak interdot coupling Cint

=1 aF and for RtL=20 M�, RtR=1 M�, and RbL=RbR=50 M�. The other parameters are the same as in Fig. 2.
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processes are responsible, while the cross processes lead to a
reduction in FtL below unity. The cross-correlation function
StL,bL is presented in Fig. 11�b�. In contrast to the symmetri-
cal case �Fig. 4�c��, when StL,bL is always negative in the
right-upper and the left-lower quarters of the map, now one
can see that it can be also positive in some areas. This de-
pendence is nontypical for cross correlation in scattering of
electrons and now it exhibits bunching.

The results for the strong-coupling case �Cint=3 aF� are
presented in Fig. 12. One can see that behavior of FtL is very
similar to that one obtained in the symmetrical case �com-
pare Figs. 6�b� and 12�a��. The cross-correlation function
StL,bL in Fig. 12�b� is nonmonotonic; it can even change its
sign with an increase in the bias voltage �see, for example,
regions a and b, where StL,bL�0 in the upper quarter and
becomes positive for higher VtR�. We made a cross section
for VtR=40 mV, through regions b and c, in order to analyze

different contributions DtL,bL
nt�nb�,ntnb to StL,bL �see Fig. 13�. For

negative VbR the component DtL,bL
−10,01 is dominating �see the

pink long dash curve�. This contribution is also responsible
for change in StL,bL from positive to negative values with
increasing VbR. When VbR
0 the amplitude of the compo-
nent DtL,bL

−11,−10 and DtL,bL
−11,01 is larger than the other components.

Moreover, DtL,bL
−11,−10, describing correlations between tunnel-

ing events through the left top junction from the charge states
�−1,1� and forward tunneling processes in the bottom QD
play a dominating role.

V. SUMMARY AND FINAL REMARKS

We performed studies of dynamical current correlations in
the system of two capacitively coupled quantum dots
�2QDs�. In this four-terminal system we first determined sta-
bility diagrams for states with various numbers of additional
charge introduced either to the top or the bottom QD as a
function of bias voltages VtR and VbR applied to the top and
the bottom channels, respectively. The charge diagram is a
background for studies current-current correlations because
we can separate allowed tunneling processes, which contrib-
ute to currents. We considered two different situations for
weak and strong couplings between QDs. For weak coupling
one can observe independent transport through one of QDs
in some range of bias voltages VtR and VbR �as one can ex-
pect�. In contrast, for the strong-coupling case, where both
QDs are engaged in transport, the charging diagram is differ-
ent. In the Coulomb blockade region the charge states
�−1,1� or �1,−1� are metastable, and when bias is larger than
the threshold voltage they participate in transport �together
with state �0,0� and its neighbors�. For a very strong coupling
a larger charge space with states �−n ,n� and �n ,−n� �for n

1� can be engaged. Transport through one of the channel
induces large potential fluctuations in the second one �see,
e.g., SVt,Vt

and SVb,Vb
in Fig. 5�b��. This is a dynamical pro-

cess and it is responsible for large enhancement of the Fano
factor. We called it the dynamical Coulomb blockade
effect.29,34 We decomposed the correlation function S��,����

into individual contributions D��,����
nt�nb�,ntnb of tunneling processes,

which occur in the charge space �nt ,nb�. Dynamical contri-

butions are relevant for the Fano factor. Their autocorrelated
components are positive, whereas the cross-correlated com-
ponents are negative. They compensate each other in part
and lead to the super- or the sub-Poissonian shot noise, de-
pending on which contribution dominates �either autocorre-
lation or cross-correlation processes�.

A strong correlation can be seen even when one part of
the device is unbiased, e.g., for VbR=0 and VtR
Vth in re-
gion b in Fig. 6�d�. There occurs a pumping effect: charge
transfer in the top QD leads to injection �or ejection� of
charge in the bottom part of the device. Therefore, one can
observe a large enhancement of the shot noise SbL,bL in
which the relevant contributions are from the injected IbL

+ and
the ejected IbL

− currents to the Schottky term SbL
Sch. Our studies
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FIG. 13. �Color online� �a� The cross-correlation function StL,bL

�black solid curve� and the current IbL �black short dash curve� in
the bottom QD plotted vs VbR for the cross section through regions
c and b at VtR=40 mV. The other parameters are the same as in
Fig. 12. �b� The components of StL,bL: the pink long dash curve
corresponds to DtL,bL

−10,01, which describes correlations of the tunnel-
ing events �−1,0�→ �0,0� through the left top tunnel barrier and
�0,1�→ �0,0� through the left bottom tunnel barrier; the red solid
curve corresponds to DtL,bL

−10,−10 and describes correlations between
�−1,0�→ �0,0� and �−1,0�→ �−1,1�; the green dash-dot curve cor-
responds to DtL,bL

−11,01 and describes correlations between �−1,1�
→ �0,1� and �0,1�→ �0,0�; and the blue short dash curve corre-
sponds to DtL,bL

−11,−10, which describes correlations between �−1,1�
→ �0,1� and �−1,0�→ �−1,1�.
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resemble shot noise in the presence of Coulomb drag in
coupled quantum wires.45,46 In both the systems local charge
and voltage fluctuations make electronic transport strongly
correlated,45,46 which is seen in the current-current correla-
tion functions. Of course our system is different because we
have assumed incoherent transport with electron thermaliza-
tion at each quantum dot and electron transfer between the
dots is prohibited; thus, a momentum transfer and exchange
processes are absent in our system—in contrast to coupled
quantum wires, where these processes are relevant for the
Coulomb drag effect.

We showed also that the current cross-correlation function
StL,bL is in general negative, indicating antibunching between
charges transferred through the both channels. Let us stress
again that here antibunching is a dynamical process caused
by Coulombic repulsion between transferred electrons
�strong potential anticorrelations on the both QDs� but it is
not of fermionic origin �as in recent studies for electrons
scattered in nanostructures11–15�. The function StL,bL can have
a plateau or can be nonmonotonic as a function of bias volt-

age. The analysis of its components DtL,bL
nt�nb�,ntnb showed that

there are negative and positive contributions corresponding
to forward and backward tunneling processes. Moreover, it
was seen that due to retarded and advanced processes indi-

vidual components DtL,bL
nt�nb�,ntnb =0 at some finite bias voltages.

All these various contributions give StL,bL as a nonmonotonic
function, which can change its sign in some situations with
asymmetric tunneling resistances.

McClure et al.1 performed an experiment on a 2QD sys-
tem, which showed sign reversal of the current cross-
correlation function St,b near a honeycomb vertex in the

charge stability space. Applying gate voltages to the top and
the bottom QDs they could go from one stability region to
another. Since the sign of St,b depends on directions of tun-
neling processes �whether electrons are injected to or ejected
from QDs�, sign reversal of St,b was observed at a state de-
generacy line between the stability regions. The effect was
also seen when one bias voltage was reversed. Notice that
the experiment was performed close to border lines separat-
ing different Coulomb blockade regions and bias voltages
were small. Our studies are more general and focus on dy-
namical aspects of current correlations, which occur for large
bias voltages. It would be interesting to extend the experi-
mental setup1,2 outside the Coulomb blockade regime and
verify our theoretical predictions, for example, to see com-
petition of various contributions to the cross-correlation
function StL,bL.

We presented also the voltage-voltage correlation func-
tions SV�,V��

, which are connected with charge fluctuations in

our system. Since nanotechnology and shot-noise measure-
ment technique made recently great progress, we believe that
such the correlation functions are not purely theoretical in-
terest and they can be measured together with current corre-
lation functions.
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